Spring Design
ScreenShare Service SDK

Instructions

V1.0.8

Change logs

Date Version | Changes

2013/2/28 1.0.0 First draft

2013/3/5 1.0.1 Redefined some interfaces according to
issues raised by Richard Li

2013/3/8 1.0.2 Complete this document

2013/3/13 | 1.0.3 Revised the part on Google Analytics

2013/4/1 1.0.4 Added sendDataWithPriority interface

2013/4/9 1.0.5 Revised ServiceConfig function name

2013/5/19 |1.0.6 Added cancelSendFile interface description

2013/6/3 1.0.7 Revised AppConnection control description

2013/7/12 1.0.8 Added StreamingAPI interface description

Note: This SDK is for Android platform only.

ScreenShareServiceSDKInstructions_v1.0.8 10-17-13

© 2013 Spring Design, Inc. All rights reserved.

Page 1 of 19

Table of Contents

ADSEIACT e 3
(€] (o 1Y | V2SR PUUURRR 3
Overall architeCtureocceiiiiiiiiiieeeeee e 4
Interface desSCriptioN...... ittt 5
1. ServiceApplication Class......cccveeeeeieeeeeeieieieeeeeecccccr e 5
2. ServiceConfig Class.......cooeeeeciiiiiiiiirireeeeeeeee e 6
3. ScreenShareServiceProXy class......ccccoccvvereeeeiiiiiiieeeeeeeccieeeenn. 7
4. |ScreenShareServiceCallbackListener classccccueerueennen. 11
CASE SEUAY ..ecvriiee ettt ettt e ere s e e s eesaeestesnsaesneessessaennnesaeenen 13
1. ScreenShareService runtime environment initialization....... 13
2. Opening Service Ul in the Activity of third-party apps.......... 13
3. Opening SetupWizard Ul in the Activity of third-party apps..13
4. Adding GoogleAnalytics for Activitycccccvveveeiiieciiiieeeeen, 14
5. Sending byte array data to app on remote device................. 14
6. Streaming APl USQEE ...ccoiivviiiiiiiiieeiiiicee et e e 15
) B] VT Y- TSRS 16

© 2013 Spring Design, Inc. All rights reserved. Page 2 of 19

Abstract

ScreenShareService SDK on Android platform provides an easy to use
ScreenShare API call service (i.e. call ScreenShareServiceProxy class function) for
third-party applications, so that third-party applications do not need to know
Android AIDL technology to achieve the binding ScreenShareService and
communicating with a remote device through ScreenShareService. Of course,
third-party applications can also use AIDL way to communicate with
ScreenShareService.

A third-party ScreenShare application contains two apks. One runs on the phone
side (host), the other runs on the tablet side (client). Use different packageName for
the host and the client (You can use the same packageName if you can distinguish
between the host and the client). During ScreenShareService initialization, you need
to specify whether it is the host.

ScreenShareService SDK on Android platform is released in the form of Android

project (library). Refer SDK usage section for how to use our SDK.

Glossary

ServiceProxy Abbreviation for ScreenShareServiceProxy

© 2013 Spring Design, Inc. All rights reserved. Page 3 of 19

Overall architecture

ScreenShare System Architecture

ScreenShare host device ScreenShare client device
(Android phone) (Android tablet)

Hﬁii i“"iiilai client aﬁﬁlication

yyyyyyyyyyyyyyyyyyy - —

[ServiceProxy] [ServiceProxy]
ScreenShare
Client/Host Protocol 1
[ScreenShareService] ScreenShareService]
Communication channel
ScreenShareServiceSDK (Bluetooth/Wi-Fi) ScreenShareServiceSDK

Owned by SpringDesign, distributed with a license

Owned by Customer

Description for main classes
a) ServiceApplication

Package name: com.springdesign.screenshare.service
In the onCreate function of application class of third-party applications, it needs
to call the onCreate function of ServiceApplication «class to initialize

ScreenShareService.
b) ServiceConfig

Package name: com.springdesign.screenshare.service

Third-party applications need to call the set function of ServiceConfig class to set
the port number used by ScreenShareService (TCP/UDP port or Bluetooth UUID).
Different ScreenShare applications cannot use the same port number. The port

number must be assigned by Spring Design.

c) ScreenShareServiceProxy(ServiceProxy)

© 2013 Spring Design, Inc. All rights reserved. Page 4 of 19

Package name: com.springdesign.screenshare

ScreenShareServiceProxy class provides external ScreenShareService function
calls, including the enable/disable AppConnection, sendData, sendFile and other
functions.

Third-party applications need to instantiate this class to call its functions to

transfer data.

d) IScreenShareServiceCallbackListener

Package name: com.springdesign.screenshare

ScreenShareService callback listener interface. ScreenShareServiceProxy will
notify this interface for all data sent from ScreenShareService.

Third-party ScreenShare applications need to implement this interface to receive

data sent from ScreenShareService.

Interface description

1. ServiceApplication class

1) ScreenShareService initialization

Interface name

public static boolean onCreate(Application app, booleanisHost, booleandebugMode)

Parameter name ‘ Function

App Transfer application context
isHost True for host; False for client.
debugMode True for log out; False for no log

Return results

True denotes it is currently in ScreenShareService process. Third-party applications do not need to
initialize ScreenShare service.
False denotes it isn’t currently in ScreenShareService process. Third-party applications can initialize

ScreenShare service based on needs.

© 2013 Spring Design, Inc. All rights reserved. Page 5 of 19

2. ServiceConfig class

1) Set up listen port for file transmission function over Wi-Fi at Host or Client side

Interface name

public static void setTransferFileWifiPort(intfilePort)

Parameter name ‘ Function
filePort TCP port number is assigned by Spring Design

2) Set up listen port for search function over Wi-Fi at Host side

Interface name

public static void setSearchWifiHostPort(intsearchPort)

Parameter name ‘ Function

searchPort UDP port number is assigned by Spring Design

3) Set up listen port for search function over Wi-Fi at Client side

Interface name

public static void setSearchWifiClientPort(intsearchPort)

Parameter name ‘ Function

searchPort UDP port number is assigned by Spring Design

4) Set up UUID for the first connection over Bluetooth at Host side

Interface name

public static void setFirstUuid(String uuidStr)

Parameter name ‘ Function

uuidstr UUID string is assigned by Spring design

5) Set up UUID for the second connection over Bluetooth at Host side

Interface name
public static void setSecondUuid(String uuidStr)

Parameter name ‘ Function

uuidstr UUID string is assigned by Spring design

6) Set up listen port for the first connection over Wi-Fi at Host or Client side

Interface name

© 2013 Spring Design, Inc. All rights reserved. Page 6 of 19

public static void setFirstWifiPort(intfirstPort)

Parameter name Function
firstPort TCP port number is assigned by Spring Design

7) Set up listen port for the second connection over Wi-Fi at Host or Client side

Interface name

public static void setSecondWifiPort(intsecondPort)

Parameter name ‘ Function

secondPort TCP port number is assigned by Spring Design

3. ScreenShareServiceProxy class

Third-party applications create ScreenShareServiceProxy object, and then you
can use ScreenShareServiceProxy object to call functions provided by

ScreenShareService.

1) Create ScreenShareServiceProxy instance

Interface name

public ScreenShareServiceProxy(Context context, String packageName, String remotePackageName)

Parameter name ‘ Function

context Context

packageName Package name
remotePackageName Remote package name

2) Get connected remote device Info

Interface name

final public String getRemoteDevicelnfo()

Return results

Null: denotes service’s connection state is Not Connected
e nn

Json String: {“name”:"connected service name”,”id”:"connected service id”, “type”:0 for WI-Fl or 1 for

BT, “address”:”connected service network address "}

3) Get remote device list

Interface name

© 2013 Spring Design, Inc. All rights reserved. Page 7 of 19

final public String getRemoteDevicelList()

Return results

It's a json data
{"ServiceName":"My Service", "NetworkType":(0 for WiFi or 1 for BT), "Devicelist":[{"DevicelD":"",

"DeviceName":"Namel", "DeviceAddress":"", "IsConnected":(true of false)}, {"DevicelD":"",

"DeviceName":"Namel", "DeviceAddress":"", "IsConnected":(true of false)}, ...]}

4) Enable app connection with app of remote device

Interface name

final public int enableAppConnection(Intent activitylntent, String tipMessage, String downloadUrl)

Parameter name ‘ Function

activitylntent Service will start activity with this intent on remote device
tipMessage reserved

downloadUrl reserved

Return results
Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes

aidl failed, -1 denotes ScreenShare Service’s state is not connected, -3 denotes ScreenShare service is

off, -5 denotes not register to ScreenShare Service, -6 denotes remote package name is wrong.

5) Disable app connection with app of remote device

Interface name

final public int disableAppConnection()

Return results
Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes
aidl failed, -1 denotes ScreenShare Service’s state is not connected, -3 denotes ScreenShare service is

off, -5 denotes not register to ScreenShare Service, -6 denotes remote package name is wrong.

6) Get app connection status with app of remote device

Interface name

final public int getAppConnectionState()

Return results
1 : Not Connected

2 : Connected
3 : Connecting

4 : Disconnecting

© 2013 Spring Design, Inc. All rights reserved. Page 8 of 19

7) Send byte array data to app of remote device

Interface name
final public int sendData(byte[] buff)

Parameter name ‘ Function

The data need be sent to app of remote device

Return results

Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes
aidl failed, -1 denotes ScreenShare Service’s state is not connected, -2 denotes the request application
is not in sync mode with remote device’s application, -3 denotes ScreenShare service is off, -4 denotes

ScreenShare Service’s buffer is full, -5 denotes not register to ScreenShare Service, -6 denotes remote

package name is wrong.

8) Send byte array data with priority to app of remote device

Interface name

final public int sendDataWithPriority(int priority, byte[] buff)

Parameter name ‘ Function
priority Priority: 1 middle, 2 low
buff The data need be sent to app of remote device

Return results

Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes
aidl failed, -1 denotes ScreenShare Service’s state is not connected, -2 denotes the request application
is not in sync mode with remote device’s application, -3 denotes ScreenShare service is off, -4 denotes

ScreenShare Service’s buffer is full, -5 denotes not register to ScreenShare Service, -6 denotes remote

package name is wrong.

9) Send file to remote device and notify application (compress file during

transfer)

Interface name

final public int sendFile(String localFilePath, String remoteFilePath, String extralnfo)

Parameter name ‘ Function

localFilePath local file path for transfer
remoteFilePath remote file path for receiving
extralnfo extra information for the file

Return results

Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes
aidl failed, -1 denotes ScreenShare Service’s state is not connected, -2 denotes the request application

is not in sync mode with remote device’s application, -3 denotes ScreenShare service is off, -4 denotes

ScreenShare Service’s buffer is full, -5 denotes not register to ScreenShare Service, -6 denotes remote

© 2013 Spring Design, Inc. All rights reserved. Page 9 of 19

package name is wrong.

After third-party application calls sendFile, ScreenShareService will callback
IScreenShareServiceCallbackListener.onCallbackCalled (message.what is ON_FILE_SENT) function
and notify application the current file transfer progress. In the Remote device, ScreenShareService will
callback the IScreenShareServiceCallbackListener.onCallbackCalled (message.what is
ON_RECEIVED_FILE) function of third-party application and notify application the current file receiving

progress.

10) Send file to remote device and notify application

Interface name

final public int sendRawfFile(String localFilePath, String remoteFilePath, String extralnfo)

Parameter name ‘ Function

localFilePath local file path for transfer
remoteFilePath remote file path for receiving
extralnfo extra information for the file

Return results

Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes
aidl failed, -1 denotes ScreenShare Service’s state is not connected, -2 denotes the request application
is not in sync mode with remote device’s application, -3 denotes ScreenShare service is off, -4 denotes
ScreenShare Service’s buffer is full, -5 denotes not register to ScreenShare Service, -6 denotes remote

package name is wrong.

After third-party application calls sendFile, ScreenShareService will callback
IScreenShareServiceCallbackListener.onCallbackCalled (message.what is ON_FILE_SENT) function
and notify application the current file transfer progress. In the Remote device, ScreenShareService will
callback the IScreenShareServiceCallbackListener.onCallbackCalled (message.what is
ON_RECEIVED_FILE) function of third-party application and notify application the current file receiving

progress.

11) Cancel send file

Interface name

final public int cancelSendFile(String localFilePath, String remoteFilePath, String extralnfo)

Parameter name ‘ Function

localFilePath local file path for transfer
remoteFilePath remote file path for receiving
extralnfo extra information for the file

Return results

Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes
aidl failed.

© 2013 Spring Design, Inc. All rights reserved. Page 10 of 19

After third-party application calls cancelSendFile, ScreenShareService will callback
IScreenShareServiceCallbackListener.onCallbackCalled (message.what is ON_FILE_SENT) function
for the file is being sent. “state=-7" denotes the file transfer has been cancelled. In the Remote device,
ScreenShareService will callback the IScreenShareServiceCallbackListener.onCallbackCalled
(message.what is ON_RECEIVED_FILE) function of third-party application. “state=-7" denotes the file

transfer has been cancelled on remote device.

12) Start http file server

Interface name

final public String startHttpFileServer(int port, String resourcePath, String contextPath)

Parameter name Function

port 0 denotes ScreenShareService will auto select for app
>0 denotes ScreenShareService will use it. If it has been used, then

start will fail.

resourcePath Resource path, should be absolute disk path. For example:

Environment.getExternalStorageDirectory().getAbsolutePath()

contextPath Context path, example: /

Return results

Returns baseUrl,

null denotes start failed

13) Stop http file server

Interface name

final public int stopHttpFileServer(String baseUrl)

Parameter name ‘ Function

The baseUrl returned by startHttpFilServer()
Null means stop all started by the app
Return results

Returns 1 if submitting to ScreenShare Service successes, others denote error. Error code: 0 denotes
aidl failed.

4. IScreenShareServiceCallbackListener class

Third-party applications need to implement ISCreenShareServiceCallbackListener to
process received data.

1) Called after callback is received from app on remote device

© 2013 Spring Design, Inc. All rights reserved. Page 11 of 19

Interface name

public void onCallbackCalled(Message message)

Parameter name ‘ Function

message message.what represents the callback type, Bundle stores
parameters. See below:
CallbackMethod.ON_RECEIVED_DATA
Param: data type: ByteArray
CallbackMethod.ON_RECEIVED_FILE

Param: filePath type String

Param: extralnfo type String

Param: state type int (100 denotes receive complete, >=0
denotes receiving percent)
CallbackMethod.ON_STATE_CHANGED

Param: oldState type int

Param: newState type int

Param: reason type int

Param: extralnfo type String
CallbackMethod.ON_METHOD_RESULT

Param: methodName type String

Param: result type int

Param: extralnfo type String
CallbackMethod.ON_FILE_SENT

Param: filePath type String

Param: extralnfo type String

Param: state type int (100 denotes send complete, >=0 denotes
sending percent)
CallbackMethod. ON_APP_CONNECTION_STATE_CHANGED

Param: oldState type int

Param: newState type int

Param: reason type int

Return results
Void

2) Called after download http file request is received from app on remote device

Interface name

public boolean onHttpDownloadFile(String url, String reserved)

Parameter name ‘ Function
url Whole url, starts with baseUrl|
reserved Reserved for later use

Return results

True denotes allowing download.

False denotes refusing download.

© 2013 Spring Design, Inc. All rights reserved. Page 12 of 19

Case study

Please refer ScreenShareServiceDemo project for more code details. To get the
client-side project run on tablet, change the packageName of the demo project
manifest file to com.springdesign.screenshare.demo.client, then change the package

name of class R imported in the source code.

1. ScreenShareService runtime environment initialization

First configure the port (assigned by Spring Design) in DemoApp.onCreate
function for ScreenShareService. Then call ServiceApplication.onCreate. When the
return value is false, DemoApp can do its own initialization. During initialization, it
needs to create an instance of ScreenShareServiceProxy (or its subclasses) and set a
callbackListener for this instance. ScreenShareService will call the callbackListener
function to communicate with third-party applications. Third-party applications can
actively communicate with ScreenShareService through ScreenShareServiceProxy to
transfer data.

For specific codes, please check DemoApp.onCreate function and

MyServiceProxy.java file.

2. Opening Service Ul in the Activity of third-party apps

Intent intent = new Intent (this,
com.springdesign.screenshare.service.activity.MainActivity.class);
startActivity(intent).

3. Opening SetupWizard Ul in the Activity of third-party apps

Intent intent = new Intent (this,
com.springdesign.screenshare.service.activity.SetupWizardActivity.class);
startActivity(intent).

© 2013 Spring Design, Inc. All rights reserved. Page 13 of 19

4. Adding GoogleAnalytics for Activity

Stepl: Place the google analytics_config.xml file at the res/values directory. Set
ga_trackingld with the correct value obtained through applying at GoogleAnalytics

website.

All Activities that need to have analytics function must follow below steps. You can
create a base class with including below codes for all Activities.

Step2: Add below code to the DemoActivity.onCreate function in DemoActivity:

EasyTracker.getInstance().setContext(this).

Step3: Add below code to the DemoActivity.onStart function in DemoActivity:

EasyTracker.getInstance().activityStart(this);

Step4: Add below code to the DemoActivity.onStop function in DemoActivity:

EasyTracker.getInstance().activityStop(this);

5. Sending byte array data to app on remote device

Step 1: Define Handler in DemoActivity to process Messages from
MyServiceCallbackListener. In DemoActivity.onStart, assign Handler to
MyServiceProxy instance in DemoApp. In DemoActivity.onStop, set the Handler of
the CallbackListener instance in DemoApp with null value. Please refer Handler

definition and onStart/onStop functions in DemoApp and DemoActivity.

Step 2: Call the sendData function of ScreenShareServiceProxy instance in DemoApp
to send byte array to remote device. On remote device, after service receives data, it
will call CallbackListener.onDataReceived function. This function will convert data to
string to send to the handler of DemoActivity to process. You can modify the
ScreenShareServiceCallbackListener.onDataReceived function code for other tasks.

Please refer ScreenShareServiceCallbackListener.java and DemoActivity handler code.

© 2013 Spring Design, Inc. All rights reserved. Page 14 of 19

6. Streaming API usage

Step 1: In MyServiceProxy, implement request validation in onHttpDownloadFile
function of MyServiceCallbackListener. If the request is legitimate, it will return true.

Otherwise, it will return false to deny download.

Step 2: In DemoActivity, call the startHttpFileServer of ScreenShareServiceProxy
instance in DemoApp to start a file server. After an Http file server is started, app will
get baseUrl (excluding IP information). App can start multiple file servers. App can
use sendData interface to send the baseUrl to remote app. The remote app can use
getRemoteDeviceAddress function of ScreenShareServiceProxy to get the other
party’s IP. Then the remote app can download files on server via access Url

composed by IP and baseUrl.

Step 3: In DemoActivity, call the stopHttpFileServer of ScreenShareServiceProxy
instance in DemoApp to stop a file server. If the value of baseUrl parameter is null, all

file servers started by this app will be stopped.

© 2013 Spring Design, Inc. All rights reserved. Page 15 of 19

SDK usage

1. Import SDK project to eclipse
In eclipse, select File>Import>General>Existing Projects into Workspace. Note:

The encoding format in SDK project is UTF-8, as shown in below figure:

= Import |

Import Projects

Select a directory to search for existing Eclipse projects.

I]| :
LN R

@ Select root directory: D\Projects\workspace\ScreenShareServi Browse...
) Select archive file: Browse...
Projects:

ScreenShareServiceSDE_deploy (DM\Projects\workspace\Scr Select All

Deselect All

Refresh

i

‘| 1] 3

[[] Copy projects into workspace
Working sets
[Add project to working sets

Select...

@:‘ Mext = [Finish] ’ Cancel

2. Add Library to the project that needs to integrate SDK

Right click >Properties>Android. Set Library property, as shown in below
figure:

© 2013 Spring Design, Inc. All rights reserved. Page 16 of 19

7

= Properties for ScreenShareServiceDemaServer | = 2|
type filter text Android “ Ty
Resoulrce Target Name Vendor Platf.. A -
Android . .
Android Lint Preferences [7] Android 1.5 Android Open Source .. 1.5 3
Builders [7] Android 1.6 Android Open Source .. 1.6 4 I
Java Build Path [] Android 2.1 Android Open Source .. 2.1 7
Java Code Style [[] Google AP.. Goagle Inc. 21 7
Java Compiler [C] Android 2.2 Android Open Source .. 2.2 8
Java Editor [[] Google AP.. Google Inc. 2.2 g
Javadac Location Android 2.... Android Open Source ... 2.3.3 10
Praject F%efere.nces [7] Android 3.0 Android Open Source .. 3.0 11
Refactoring HISl.Dr_'," [7] Android 3.1 Android Open Source ... 3.1 12
Run/Debug Settings . .
. [C] Android 3.2 Android Open Source .. 3.2 13
Task Repositary
Task Tags [] Android 4.0 Android Open Source .. 4.0 14 =
Validation [[] Google AP... Google Inc. 4.0 14
WikiText
Library
[[11s Library
Reference Project
" \ScreenShareSe.. ScreenShareService..
Remove
Up |
Down
‘ m b 2
@ ok || cancel

3. Manifest file must have below permission, Activity, receiver and Service

disclaims:

<uses-permission android:name="android.permission.DEVICE_POWER" />
<uses-permission android:name="android.permission.INTERNAL_STORAGE" />
<uses-permission android:name="android.permission.MOUNT_UNMOUNT_FILESYSTEMS" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
<uses-permission android:name="android.permission.CHANGE_NETWORK_STATE" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_W!IFI_STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<uses-permission android:name="android.permission. WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="adnroid.permission.ACCESS_CHECKIN_PROPERTTES" />

© 2013 Spring Design, Inc. All rights reserved. Page 17 of 19

<uses-permission android:name="android.permission.GET_TASKS" />

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

<uses-permission android:name="android.permission.READ_PHONE_STATE" />
<uses-permission android:name="android.permission.WRITE_SETTINGS" />
<uses-permission android:name="com.android.launcher.permission.INSTALL_SHORTCUT" />

<uses-permission android:name="com.android.vending.CHECK_LICENSE" />

<!--ScreenShareServiceSDKConfig begin -->
<activityandroid:process=":remoteScreenShareService"
android:configChanges="orientation [keyboardHidden"
android:label="@string/ss_service_app_name"
android:launchMode="singlelnstance"

android:screenOrientation="sensor"
android:name="com.springdesign.screenshare.service.activity.MainActivity"
android:theme="@android:style/Theme.Translucent.NoTitleBar">
<intent-filter>
<actionandroid:name="com.springdesign.screenshare.SETTINGS"/>
<categoryandroid:name="android.intent.category. DEFAULT"/>
</intent-filter>

</activity>

<activityandroid:process=":remoteScreenShareService"
android:configChanges="orientation [keyboardHidden"
android:label="@string/ss_service_app_name"
android:launchMode="singleTask"

android:screenOrientation="sensor"
android:name="com.springdesign.screenshare.service.activity.SetupWizardActivity"
android:theme="@android:style/Theme.Translucent.NoTitleBar">

</activity>

<activityandroid:process=":remoteScreenShareService"
android:name="com.springdesign.screenshare.service.activity.DeviceListActivity"
android:label="@string/ss_service_app_name"
android:theme="@android:style/Theme.Dialog"

android:configChanges="orientation [keyboardHidden"/>

<receiverandroid:process=":remoteScreenShareService"
android:label="@string/ss_service_app_name"
android:name="com.springdesign.screenshare.service.receiver.ReadmateServiceBootReceiver">
<intent-filter>

<actionandroid:name="android.intent.action.BOOT_COMPLETED"/>
<categoryandroid:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</receiver>

© 2013 Spring Design, Inc. All rights reserved. Page 18 of 19

<serviceandroid:process=":remoteScreenShareService"
android:name="com.springdesign.screenshare.ScreenShareService"
android:icon="@drawable/ss_service_icon">

</service>

<!l--ScreenShareServiceSDKConfig end -->

4. You can change GoogleAnalyticsConfig parameters in the ss_service_config.xml
at the res/values directory under ScreenShareServiceSDK_deploy project.

© 2013 Spring Design, Inc. All rights reserved. Page 19 of 19

